Linearly implicit quantization-based integration methods for stiff ordinary differential equations
نویسندگان
چکیده
In this paper, new integration methods for stiff ordinary differential equations (ODEs) are developed. Following the idea of quantization–based integration (QBI), i.e., replacing the time discretization by state quantization, the proposed algorithms generalize the idea of linearly implicit algorithms. Also, the implementation of the new algorithms in a DEVS simulation tool is discussed. The efficiency of these new methods is verified by comparing their performance in the simulation of two benchmark problems with that of other numerical stiff ODE solvers. In particular, the advantages of these new algorithms for the simulation of electronic circuits are demonstrated.
منابع مشابه
Linearly Implicit Discrete Event Methods for Stiff ODEs. Part I: Theory
This paper introduces two new numerical methods for integration of stiff ordinary differential equations. Following the idea of quantization based integration, i.e., replacing the time discretization by state quantization, the new methods perform first and second order backward approximations allowing to simulate stiff systems. It is shown that the new algorithms satisfy the same theoretical pr...
متن کاملLinearly Implicit Discrete Event Methods for Stiff Ode’s
This paper introduces two new numerical methods for integration of stiff ordinary differential equations. Following the idea of quantization based integration, i.e., replacing the time discretization by state quantization, the new methods perform first and second order backward approximations allowing to simulate stiff systems. It is shown that the new algorithms satisfy the same theoretical pr...
متن کاملA Class of Linearly Implicit Numerical Methods for Solving Stiff Ordinary Differential Equations
We introduce ABC-schemes, a new class of linearly implicit one-step methods for numerical integration of stiff ordinary differential equation systems. Formulas of ABC-schemes invoke the Jacobian of differential system similary to the methods of Rosenbrock type, but unlike the latter they include also the square of the Jacobian matrix.
متن کاملOn second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize
Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...
متن کاملExplicit stabilized integration of stiff determinisitic or stochastic problems
Explicit stabilized methods for stiff ordinary differential equations have a long history. Proposed in the early 1960s and developed during 40 years for the integration of stiff ordinary differential equations, these methods have recently been extended to implicit-explicit or partitioned type methods for advection-diffusion-reaction problems, and to efficient explicit solvers for stiff mean-squ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Simulation Modelling Practice and Theory
دوره 35 شماره
صفحات -
تاریخ انتشار 2013